Skip to content

Reranker Cohere#

The Reranker Cohere node allows you to rerank the resulting chunks from a vector store. You can connect this node to a vector store.

The reranker reorders the list of documents retrieved from a vector store for a given query in order of descending relevance.

On this page, you'll find the node parameters for the Reranker Cohere node, and links to more resources.

Credentials

You can find authentication information for this node here.

Parameter resolution in sub-nodes

Sub-nodes behave differently to other nodes when processing multiple items using an expression.

Most nodes, including root nodes, take any number of items as input, process these items, and output the results. You can use expressions to refer to input items, and the node resolves the expression for each item in turn. For example, given an input of five name values, the expression {{ $json.name }} resolves to each name in turn.

In sub-nodes, the expression always resolves to the first item. For example, given an input of five name values, the expression {{ $json.name }} always resolves to the first name.

Node parameters#

Model#

Choose the reranking model to use. You can find out more about the available models in Cohere's model documentation.

View n8n's Advanced AI documentation.

AI glossary#

  • completion: Completions are the responses generated by a model like GPT.
  • hallucinations: Hallucination in AI is when an LLM (large language model) mistakenly perceives patterns or objects that don't exist.
  • vector database: A vector database stores mathematical representations of information. Use with embeddings and retrievers to create a database that your AI can access when answering questions.
  • vector store: A vector store, or vector database, stores mathematical representations of information. Use with embeddings and retrievers to create a database that your AI can access when answering questions.